Rheolef  7.2
an efficient C++ finite element environment
dirichlet.cc

The Poisson problem with homogeneous Dirichlet boundary conditions.

The Poisson problem with homogeneous Dirichlet boundary conditions

#include "rheolef.h"
using namespace rheolef;
using namespace std;
int main(int argc, char**argv) {
environment rheolef (argc, argv);
geo omega (argv[1]);
space Xh (omega, argv[2]);
Xh.block ("boundary");
trial u (Xh); test v (Xh);
field uh (Xh);
uh ["boundary"] = 0;
problem p (a);
p.solve (lh, uh);
dout << uh;
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the environment page for the full documentation
Definition: environment.h:121
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
point u(const point &x)
int main(int argc, char **argv)
Definition: dirichlet.cc:28
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_quadrature_arg< Expr >::value, details::field_lazy_terminal_integrate< Expr > >::type lazy_integrate(const typename Expr::geo_type &domain, const Expr &expr, const integrate_option &iopt=integrate_option())
see the integrate page for the full documentation
STL namespace.
rheolef - reference manual
Definition: sphere.icc:25
Definition: leveque.h:25