The Cahouet-Chabart preconditioner for the Navier-Stokes equations.
#include "neumann-laplace-assembly.h"
form_diag dm (Qh, "mass");
csr<Float>
c = neumann_laplace_assembly (
a.uu, mh.u);
}
vec<Float>
solve (
const vec<Float>& Mp)
const {
vec<Float> q1 =
fact_m.solve(Mp);
vec<Float> Mp_e (Mp.size()+1);
for (size_t i = 0; i < Mp.size(); i++) Mp_e.at(i) = Mp.at(i);
Mp_e.at(Mp.size()) = 0;
vec<Float> q2_e =
fact_c.solve(Mp_e);
vec<Float> q2 (Mp.size());
for (size_t i = 0; i < q2.size(); i++) q2.at(i) = q2_e.at(i);
vec<Float> q = q1 +
lambda*q2;
return q;
}
};
see the Float page for the full documentation
see the field page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
vec< Float > solve(const vec< Float > &Mp) const
cahouet_chabart(const space &Qh, Float lambda_1)