Rheolef  7.2
an efficient C++ finite element environment
yield_slip1.icc

The yield slip problem – class body.

The yield slip problem – class body

const geo& omega, const geo& boundary1, string approx)
: S(S1), n(n1), Cf(Cf1), r(r1), boundary(boundary1), Xh(), Wh(), Yh(),
lh(), mkh(), m(), mb(), a(), b(), c1(), pmb(), pa(), pA()
{
Xh = space (omega, approx);
Wh = space (boundary, approx);
Yh = Xh*Wh;
trial u (Xh), lambda(Wh);
test v (Xh), mu(Wh);
m = integrate(u*v);
lh = integrate(v);
pmb = problem (mb);
pa = problem (a);
field vh(Xh);
pa.solve (lh, vh);
mkh = b*vh;
}
field yield_slip::residue (const field& beta_h) const {
field vh (Xh);
field rhs = b.trans_mult (beta_h);
pa.solve (rhs, vh);
test mu (Wh);
field c0h = integrate(mu*compose(projection(S,n,Cf,r), beta_h));
field mrh = b*vh + c0h - mkh;
return mrh;
}
void yield_slip::update_derivative (const field& beta_h) const {
form A = { { a, trans(b) },
{ b, -c1 } };
A.set_symmetry (c1.is_symmetric());
pA = problem(A);
}
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
problem pa
Definition: yield_slip.h:46
Float S
Definition: yield_slip.h:40
problem pA
Definition: yield_slip.h:47
space Xh
Definition: yield_slip.h:42
space Wh
Definition: yield_slip.h:42
Float n
Definition: yield_slip.h:40
field mkh
Definition: yield_slip.h:43
void update_derivative(const field &beta_h) const
Definition: yield_slip1.icc:56
Float r
Definition: yield_slip.h:40
Float Cf
Definition: yield_slip.h:40
yield_slip(Float S, Float n, Float Cf, Float r, const geo &omega, const geo &boundary, string approx="P1")
Definition: yield_slip1.icc:26
field residue(const field &beta_h) const
Definition: yield_slip1.icc:47
The projection for yield-stress rheology – its derivative.
point u(const point &x)
class rheolef::details::field_expr_v2_nonlinear_node_unary compose
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:211
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
Definition: csr.h:455
Definition: leveque.h:25