31void mtx (
const Expr& a_expr,
string a_name) {
34 out << setbasename(a_name) <<
a.uu();
43 << setbasename(a_name) <<
a.uu();
46void sdp (
const Expr& a_expr,
string a_name) {
49 out <<
"eig_"<<a_name<<
"=eig("<<a_name<<
")" <<endl
50 <<
"det_"<<a_name<<
"=det("<<a_name<<
")" <<endl
54int main(
int argc,
char**argv) {
57 string Pkd = (argc > 2) ? argv[2] :
"P1d",
58 Pld = (argc > 3) ? argv[3] : Pkd;
59 space Xh (omega, Pld),
60 Mh (omega[
"sides"], Pkd);
62 size_t k = Xh.degree(), l = Mh.degree(), kl = max(k,l),
dim = omega.dimension();
66 "invalid (k,l) = ("<<k<<
","<<l<<
")");
67 space Xhs(omega,
"P"+to_string(k+1)+
"d"),
69 Mht(omega,
"trace_n(RT"+to_string(kl)+
"d)");
71 test ws(Xhs), w(Xh), xi(Zh), phit(Mht),
mu(Mh);
87 auto inv_cs =
inv(cs);
88 auto inv_Ss =
inv(as +
trans(bs)*inv_cs*bs);
89 auto inv_T =
inv(as*inv_Ss*as +
trans(bs)*inv_cs*bs);
90 auto R = as*inv_Ss*
trans(bs)*inv_cs*
d - ac;
91 auto Ac =
trans(R)*inv_T*R;
92 auto D = ct*
inv(mt)*(dst - dt*
inv(
m)*ds);
93 auto M0 = inv_Ss - inv_Ss*as*inv_T*as*inv_Ss;
99 auto As = E*inv_M*
trans(E);
100 auto inv_A =
inv(Ac + As);
101 auto F = es*inv_T*as*inv_Ss*
trans(
D)
103 auto C = es*inv_T*
trans(es) + F*inv_M*
trans(F);
104 auto B = F*inv_M*
trans(E) - es*inv_T*R;
113 field lambda_h(Mh, 0);
114 pS.solve (rhs, lambda_h);
116 field deltat_h =
form(inv_M)*(
form(E).trans_mult(uh) +
form(F).trans_mult(lambda_h));
field lh(Float epsilon, Float t, const test &v)
see the Float page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
odiststream: see the diststream page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
Tensor diffusion – isotropic case.
int main(int argc, char **argv)
void put(odiststream &out, const Expr &a_expr, string a_name)
void sdp(const Expr &a_expr, string a_name)
void mtx(const Expr &a_expr, string a_name)
#define trace_macro(message)
check_macro(expr1.have_homogeneous_space(Xh1), "dual(expr1,expr2); expr1 should have homogeneous space. HINT: use dual(interpolate(Xh, expr1),expr2)")
verbose clean transpose logscale grid shrink ball stereo iso volume skipvtk deformation fastfieldload lattice reader_on_stdin color format format format format format format format format format format format format format format format matlab
Float alpha[pmax+1][pmax+1]
rheolef::details::is_vec dot
This file is part of Rheolef.
tensor_basic< T > inv(const tensor_basic< T > &a, size_t d)
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type D(const Expr &expr)
D(uh): see the expression page for the full documentation.
space_mult_list< T, M > pow(const space_basic< T, M > &X, size_t n)
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
std::enable_if< details::is_field_expr_v2_variational_arg< Expr >::value, details::field_expr_quadrature_on_sides< Expr > >::type on_local_sides(const Expr &expr)
on_local_sides(expr): see the expression page for the full documentation
std::enable_if< details::is_field_expr_quadrature_arg< Expr >::value, details::field_lazy_terminal_integrate< Expr > >::type lazy_integrate(const typename Expr::geo_type &domain, const Expr &expr, const integrate_option &iopt=integrate_option())
see the integrate page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::h_local_pseudo_function< Float > > h_local()
h_local: see the expression page for the full documentation
csr< T, sequential > trans(const csr< T, sequential > &a)
trans(a): see the form page for the full documentation
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem.