The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – di Pietro & Ern variant.
The inertia term of the Navier-Stokes equation with the discontinuous Galerkin method – di Pietro & Ern variant
template<class W, class U, class V>
integrate_option iopt = integrate_option())
{
return
*(
dot(average(
u),average(v)) + 0.25*
dot(jump(
u),jump(v))), iopt);
}
integrate_option iopt = integrate_option())
{
}
see the field page for the full documentation
see the test page for the full documentation
form inertia(W w, U u, V v, integrate_option iopt=integrate_option())
field inertia_fix_rhs(test v, integrate_option iopt=integrate_option())
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::divergence > >::type div_h(const Expr &expr)
div_h(uh): see the expression page for the full documentation
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation