Rheolef  7.2
an efficient C++ finite element environment
dirichlet.icc

The Poisson problem with homogeneous Dirichlet boundary condition – solver function.

The Poisson problem with homogeneous Dirichlet boundary condition – solver function

void dirichlet (const field& lh, field& uh) {
const space& Xh = lh.get_space();
trial u (Xh); test v (Xh);
problem p (a);
p.solve (lh, uh);
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the form page for the full documentation
see the problem page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
point u(const point &x)
void dirichlet(const field &lh, field &uh)
Definition: dirichlet.icc:25
rheolef::details::is_vec dot
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:211
Definition: sphere.icc:25
Definition: leveque.h:25